Hydrokinetic Frias Fronts (FFHC)

It is opportune and highly advisable to analyze and study the universe’s continuous expansion and movement. Based on this natural and intricate phenomenon, immense rivers of electricity could be extracted from the unlimited kinetic energy stored in the main fluvial and marine basins of the Earth.

Thus, the essences of the earth’s revolution and rotation movements, which are associated with meteorological phenomenon and define the earth’s weather, are proportionally related to the unlimited hydrokinetic energy that would be extracted from mighty rivers and marine straits.

Additionally, the speed of the water in those fluvial and marine systems, which flow in the same direction as the aforementioned movements (from the West to East), is greater compared to those currents flowing in the opposite direction. It is that way that every hydrodynamic system that fulfills the basic technical requirements and it’s feasible to use, is extremely attractive to produce abundant clean and renewable energy.

Based on the speed of the Earth’s revolution movement, which is near 29,470 m/s, and on the acceleration of Earth’s rotation, which varies upon the latitude in which is measured – in the equator its speed is 445 m/s, while 45 degrees north, its speed is 298 m/s – we can get an idea of the immense potential power available in the universe as well as of its favorable and applicable advantages in defined zones of our planet.

It’s for those reasons that when satisfying a high percentage of the demand of electrical energy through an inexhaustible source, the increasing consumption of fossil fuels that now are used to generate electricity, along with its environmental problems and ecological alterations, would be progressively reduced.

In addition, due to the influence of the nutation phenomenon (periodic variation in the inclination of the earth’s axis caused by the varying gravitational pull of the sun and the moon), the most intense and prolonged rains, as well as the formation and greater incidence of cyclones and hurricanes take place north of the equator. This means that the river basins located near, and in, the northern hemisphere have more volume per area/unit, as opposed to the river basins located south of the equator. This data allows to better evaluate the hydrokinetic potential of the main fluvial and marine systems.

In accordance to the previous statement and with the intention in mind of taking advantage of the middle and lower parts of the mighty rivers, that due to their physiographical conditions, such as wide basins, extensive flooding areas, thick vegetation, enormous volumes of sediments, and the absence of mountainous spurs, is not feasible to build conventional hydroelectric projects. Thus, criteria to apply in the proposed sites where modern and productive Frias Hydrokinetic Fronts (FFHC – by its abbreviation in Spanish) would be installed, consists on the following:

1. It is required that the fluvial systems have an abundant volume of water as well as moderate variations in its level and draining.

This requirement does not apply to the suggested marine FFHCs to be installed in the sea, however, it is required that in some of the pre-selected sites, the groups of submarine turbo-generators are left well protected against natural contingencies (cyclones, tsunamis, freezing, etc.)

2. Selected fluvial and marine sites should be between 30 to 90 meters deep in order to facilitate construction and optimize operations. In mid-sized river as well as in those suggested to be natural models to analyze the FFHCs’ benefits, the minimum depth required would be 15 meters.

If necessary, the selected hydraulic areas would be dredged and prepared in order to satisfy the project’s specifications and norms. The result would be higher energetic production.

3. Due to that the majority of the FFHCs would be located in zones with intense fluvial or marine traffic, it is essential not to interfere with the navigation. That is why the FHCs would be situated in the central areas of the rivers and marine straits; their own access, ventilation, and cables ducts would double-function as navigation signals.

The delimited areas would be four to seven kilometers long and as wide as required by the number of installed parallel lines of extraction.

It is implied that the quality and trustworthiness of the basic hydrologic, geologic, topographic, bathymetric, and oceanography information for the recommended sites guarantees that the concepts, criteria and methods to apply are completely fulfilled. It is also implied that the accuracy of the information will guarantee, during the life span and operation of the submarine electromechanical equipment, high energy, technical and economic indexes.

As a result, the powerful groups of turbo-generators of the kind Kaplan-Bulb (or similar) should be designed and built following scientific and technological processes of vanguard to sustain this new era of industrial development. They would facilitate transforming the valuable fluvial and maritime kinetic energy into permanent power currents, motivating that way, intensive hydroelectricity usage.

It means that the technical and economic viability would be sustained in considerably increasing the speed of water flow in the selected hydraulic sections. This requires an original invention, in this case, the FFHCs, to develop an artificial river within the most important rivers and marine straits. Without a doubt this requirement is feasible, because if the sea currents work like great underground rivers, imitating it by creating artificial currents is possible based on special conception and structure.

It is high-priority to exactly specify the protection, foundations and stability programs for the turbo-generators located in the depths of rivers and marine straits. The same programs need to be specified for the access, ventilation, and electrical cables ducts; it would be this way, that potential damages would be avoided, while the correct water flow would run from and to the engine rooms.

Similarly, the lines of transmission, preferably those of direct current, which would be in charge of transporting the electrical energy to the surface, could be located within submarine pipes. If in the future it were possible to transmit the electricity to the interconnection substations without using either towers or conductive cables – similar to electronic wireless communication – would represent an exponential advance to the FFHCs.

As for the great tubular structures that would drive the volumes of design to each line of extraction/production, from the first to the last turbo-generating equipment, their initial section would have a rectangular shape whereas the final section would be of semicircular form (similar to a greenhouse). With which besides of satisfying strict project conditions in order to certainly and securely supply the demanded volume, they would also facilitate increasing the speed of the water.

To correctly execute them the manufacturing systems, assembly, anchorage, and the cross-sectional sections of transition would require materials capable of maintaining the maximum speeds, and must fulfill all pre-established requirement.

As reference, by applying this original and innovative project planning to the mightiest river of the world, the Amazon River, the diversification and progressive expansion of a process of massive generation of electrical energy would be facilitated.

The Amazon River’s average unloading to the sea is 210,000 m³/s, which is equivalent to the sum of following rivers listed in order of importance: Congo, Orinoco, Yangtze, Ganges, La Plata, Mississippi y Mackenzie.

Thus, when progressing from greatest to the smallest, any fluvial system satisfying the criteria of design could take advantage of such planning.

The foundations and the general planning to take advantage of mighty rivers, where developing common hydroelectric projects is not feasible; as well as the foundations to install FFHCs in marine straits that meet the required characteristics to apply this innovative conception, would be:

a) It would not be required to execute any type of superficial work such as dams, dumping sites, hydroelectric plants, or deflection works, nor would it be necessary to install external electromechanical equipment with the exception of direct transmission lines; which based on advances in high-tension electrical transmission, could evolve to completely suppress towers and conductive cables.

b) Flooding urban centers, cultivation land, archaeological ruins, etc., by creating artificial lakes, would be avoided. Besides, all related problems would also be eliminated such as affectations, indemnifications, opposition from social, environmental and politic organization, as well as problems caused by sediments.

c) If it’s feasible to manufacture and install powerful turbo-generators, the FFHCs formed with several parallel lines of production and separated proportionally to the size of their own equipments, it would be advisable that the speed of the water in the extraction sections is kept as is and even -also could settle electromechanical equipment operating at variable speed to provide for contingencies or hydrodynamic disturbances-, increased within all conduction structures (one river with natural flow and another with greater speed).

d) The access to each production group would take place by means of vertical ducts (similar to the periscope of a submarine), with appropriate height and geometry to prevent water and/or sediments enter to the inside of the turbo generators during flood season or by incidence of natural phenomena. This means that only tube/chimneys would emerge from the water. They’d be signalized and decorated to fit the fluvial or marine landscape.

e) Also barriers of buoys and guiding structures would be placed to delimit the exclusivity zones for the FFHCs and to canalize the total volume of production. These floating barriers would include cross-sectional meshes to control the incursion of the aquatic fauna and to prevent that some animal, be it a fish, reptile, or mammal, is damaged or romped in the turbines’ propellers.

f) Each FFHCs would occupy the central part of the chosen section. They’d be installed in such a way that the volume of water passing through the first submarine group of turbo-generators would activate and drive the following unit and so on until the last electromechanical equipment. This implies that in order to take advantage of the resources of a river basin in a normal way by applying cascading-style hydroelectric works; in the great rivers something similar would be needed, with the only difference that the FFHCs production lines would be placed following the direction of the river flow.

To develop powerful, safe and modern submersible turbo-generators to extract, transform, and generate rivers of clean and renewable energy would be translated into suitable objectives for the worldwide power of the future. Many of the resources currently used for building perforation platforms as well as other systems of extraction could be canalized to build the innovative FFHCs.

This planning demands the coordination of industry professionals and research centers, in order to contribute and apply their experiences and scientific knowledge to build, install and operate turbines and high-technology generators that due of the location to be installed, size and characteristics, would be an important contribution in 21st century.

Before this horizon of work and industrial challenge, the conjunction of efforts and investments in the energy sector as well as manufacturing capital associated with regional governments and industry professionals is fundamental. The same purpose and commitment must prevail to execute the transmission systems and electric transformation, because due to environmental restrictions, distances to cover, affectations, etc., their construction is complicated and the costs are high.

Hence, the transmission and interconnection systems would use high-technology materials in their equipment, as well as in their installation and transmission procedures in order to allow connecting all substations without conventional infrastructure in the future.

With imagination, investigation, invention and the decision from financial, industrial and construction partnerships and venture capitalists, the proposed FFHCs would find their modern concepts of design as well as their projects to be a reality. Their abundant and inexpensive hydrokinetic production would become a strategic and high-priority factor in order to save enormous volumes of fossil fuels such as petroleum, gas, and coal. They would also help reduce inherent costs, risks and oppositions to the nuclear energy. In addition, FHCs would contribute to protect and restore the earth’s normal climate.

In the main rivers it is considered that the FFHCs would produce twelve million Gigawatts?hour; equivalent to 70% of the present worldwide generation of electricity.

Without a doubt, their attainment demands a different vision and mentality in order to confront, surpass and go beyond the challenge of applying, increasing and diversifying plans and programs of massive production of electric energy in rivers that do not allow the construction of traditional hydroelectric projects.

Naturally, organizations like the United Nations, World Bank, International Monetary Fund, Asia-Pacific Cooperation, European Union and International Communities of Cooperation and Promotion, would have a preponderant function in supporting the worldwide implementation of the FHCs throughout their various stages through renewed politics and alliances of progress.

The objective is to make of the FFHCs an equitable intention and unavoidable commitment between countries and towns that have and share important rivers and marine straits. Also an objective is to extend the FFHCs energetic contributions to other regions and/or nations beyond their borders. Such actions would forge and fortify a sense of collaboration between countries and would install common goals to ensure the posterity and quality of life in Earth.

Based on correctly taking advantage of the unlimited energy of movement, combined with the determination of governments, multi-national, financial and economic organizations, the rivers of energy that the FFHCs would produce will result in profitable business models as well as in a priceless benefit for humanity.

MAIN RIVERS IN THE WORLD

America

Amazonian Basin. Amazon River. Average Volume: 210 000 m³/s 

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude South

Longitude West

Kilometers

1.    Oran, Peru

3º 21′

72º 31′

3 450

2.    Benjamín Constant, Brazil

4º 20′

69º 48′

3 100

3.    Santo Antonio de Ica, Brazil

3º 00′

67º 53′

2 600

4.    Fonte Boa, Brazil

2º 37′

65º 38′

2 295

5.    Cayambe, Brazil

3º 30’

64º 26’

2 100

6.    Coari, Brazil

4º 03’

63º 01’

1 935

7.    Anama, Brazil

3º 35’

61º 18’

1 717

8.    Manacapuro, Brazil

3º 19’

60º 34’

1 620

9.    Manaus, Brazil

3º 06’

59º 51’

1 530

10. Itaquatiara, Brazil

3º 09’

58º 26’

1 255

11. Valeria, Brazil

2º 24’

56º 26’

960

12. Obidos, Brazil

1º 57’

55º 30’

820

13. Santarem, Brazil

2º 24’

54º 15’

650

14. Canal Norte, Brazil

1º 19’

51º 54’

350

15. Canal Sur (Gurupa), Brazil

1º 25’

51º 42’

350

16. Bacarena, Brazil

1º 30’

48º 48’

150

 

Colombia-Peru. Amazonas River. Average Volume: 210 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Ocean

Latitude South

Longitude West

Kilometers

17. Nazaret, Amazonas

4 º 07′

70 º 03′

2958

18. C. Paraná, Amazonas

3 º 58′

70 º 10′

2980

 Representative tributaries that flow into the Amazon River:

Left Bank. Negro, Caquetá-Jurupá and Putumayo Rivers.

 Brazil. Negro River. Average flow: 29 300 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Amazon River

     Latitude North

Longitude West

Kilometers

19. Manaos-Piricatuba, Amazonas

3 º 04′

60 º 16′

23

20. Boepadi, Amazonas

2 º 07′

61 º 10′

45

21. Roraima, Amazonas

1 º 24′

61 º 50′

202

 Brazil. Caquetá-Jurupá River. Average flow: 18 600 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Amazon River

     Latitude North

Longitude West

Kilometers

22. Caqutá-Jurupá I, Amazonas

2 º 59′

64 º 48′

24

23. Caquetá-Jurupá II, Amazonas

2 º 30′

63 º 04′

100

24. Caquetá-Jurupá III, Amazonas

1 º 52′

67 º 02′

389

Brazil. Putumayo River. Average flow: 8 760 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Amazon River

     Latitude North

Longitude West

Kilometers

25. Putumayo I, Amazonas

3 º 09′

68 º 01′

5

26. Putumayo II, Amazonas

2 º 59′

68 º 17′

60

27. Putumayo III, Amazonas

2 º 55′

68 º 36′

116

 Right Bank. Madre de Dios-Madeira, Ucayali and Marañón Rivers.

Brazil. Madre de Dios-Madeira River. Average flow: 31 200 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Amazon River

     Latitude North

Longitude West

Kilometers

28. Arari, Madeira

3 º 25′

58 º 47′

10

29. Axinim, Madeira

3 º 57′

59 º 17′

103

30. Cachoeirinha, Madeira

5 º 29′

60 º 47′

378

31. Curucá, Rondonía

6 º 02′

61 º 42′

528

 Peru. Ucayali River. Average flow: 11 500 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Amazon River

     Latitude North

Longitude West

Kilometers

32. Ucayali I, Loreto

4 º 33′

73 º 30′

21

33. Ucayali II, Loreto

4 º 47′

73 º 38′

57

34. Ucayali III, Loreto

5 º 06′

74 º 03′

179

Peru. Marañón River. Average flow: 16 200 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Amazon River

     Latitude North

Longitude West

Kilometers

35. Loreto, Loreto

4 º 30′

73 º 33′

13

36. San Regis, Loreto

4 º 31′

73 º 55′

66

37. San Pedro, Loreto

4 º 32′

74 º 12′

102

38. Parinari, Loreto

4 º 34′

74 º 29′

156

Venezuela and Colombia. Orinoco River. Average Volume: 37 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Caribbean)

Latitude North

Longitude West

Kilometers

39. Puerto Nariño, Vichada-Amazonas

5º 00′

67º 48′

1 130

40. Orope, Apure-Bolivar

6º 17′

67º 18′

948

41. Maroni, Apure-Bolivar

7º 27′

66º 30′

768

42. Parmana, Guarico-Bolivar

7º 52′

65º 40′

654

43. El Piñal, Anzoategui-Bolivar

7º 41’

64º 43’

538

44. Simon Bolivar, Anzoategui-Bolívar

8º 07’

63º 43’

378

45. Guayana, Monagas-Delta Amacuro

8º 24’

62º 37’

245

46. Imperial, Monagas-Delta Amacuro

8º 33’

62º 20’

208

Argentina and Uruguay. La Plata River. Average Volume: 28 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude South

Longitude West

Kilometers

47. La Plata River, Buenos Aires

34º 30′

58º 11′

164

48. Uruguay River 1, Buenos Aires-Colonia

34º 04′

58º 19′

214

49. Uruguay River 2, Entre Rios-Soriano

33º 34′

58º 28′

274

50. Rosario, Santa Fe-Entre Rios

32º 48′

60º 41′

505

51. Diamante, Santa Fe-Entre Rios

32º 05’

60º 39’

591

52. Santa Elena, Santa Fe-Entre Rios

30º 55’

59º 47’

764

53. Esquina, Santa Fe-Corrientes

29º 49’

59º 38’

897

54. Goya, Santa Fe-Corrientes

29º 05’

59º 16’

1 003

55. Peguaho, Chaco-Corrientes

27º 43’

58º 48’

1 175

United States. Mississippi River. Average Volume: 19 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Gulf of Mexico)

Latitude North

Longitude West

Kilometers

56. Greenwood, Louisiana

29º 47′

90º 00′

135

57. San Gabriel, Louisiana

30º 15′

91º 07′

345

58. Black Hawk, Louisiana-Mississippi

31º 10′

91º 35′

516

59. Golden Landing, Louisiana-Mississippi

31º 47′

91º 21′

606

60. Vicksburg, Louisiana-Mississippi

32º 16’

90º 57’

689

61. Longwood, Arkansas-Mississippi

33º 06’

91º 09’

829

62. Dusha, Arkansas-Mississippi

33º 45’

91º 07’

927

63. Memphis, Tennessee

35º 00’

90º 15’

1 156

Canada. San Lorenzo River. Average Volume: 14 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude North

Longitude West

Kilometers

64. Contrecoeur, Quebec

45º 52′

73º 15′

819

65. Batiscan, Quebec

46º 28′

72º 14′

711

66. Deschambault, Quebec

46º 39′

71º 54′

678

67. Saint Nicolas, Quebec

46º 43′

71º 24′

638

68. Ile D’ Orleans South, Quebec

46º 51’

70º 58’

596

69. Ile D’ Orleans North, Quebec

46º 57’

71º 00’

596

70. Saint Denis, Quebec

47º 30’

70º 06’

500

 Canada. Mackenzie River. Average Volume: 10 500 m3/ss

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Beaufort Sea)

Latitude North

Longitude West

 Kilometers

71. Mackenzie 1, Northern Territories

68º 00′

134º 27′

214

72. Mackenzie 2, Northern Eastern Territories

67º 12′

132º 56′

336

73. Mackenzie 3, Northern Territories

67º 15′

130º 21′

471

74. Mackenzie 4, Northern Territories

66º 11′

128º 54′

631

75. Mackenzie 5, Northern Territories

65º 09’

126º 23’

828

76. Mackenzie 6, Northern Territories

64º 47’

125º 06’

911

77. Mackenzie 7, Northern Territories

64º 06’

124º 25’

1 006

United States. Yukon River. Average Volume: 8 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Bering Sea)

Latitude North

Longitude West

Kilometers

78. Mountain Village, Alaska-USA

62º 04′

163º 35′

144

79. Ohogamiut, Alaska-USA

61º 36′

161º 40′

315

80. Kako Landing, Alaska-USA

61º 52′

160º 36′

372

81. Grayling, Alaska-USA

62º 49′

160º 04′

542

82. Innoko, Alaska-USA

63º 39’

159º 22’

647

83. Nulato, Alaska-USA

64º 49’

157º 56’

805

84. Galena, Alaska-USA

64º 40’

156º 22’

900

Colombia. Magdalena River. Average Volume: 7 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Caribbean)

 Latitude North

Longitude West

Kilometers

85. Barranquilla, Atlantic-Magdalena

11º 01′

74º 47′

14

86. Santa Rita, Atlantic-Magdalena

10º 34′

74º 43′

70

87. Guaquiri, Bolivar-Magdalena

10º 07′

74º 56′

125

88. El Vesubio, Bolivar-Magdalena

9º 17′

74º 32′

264

89. Pueblo Nuevo, Bolivar-Cesar

8º 52’

73º 50’

384

90. Campo Pillares, BolivarSanta

8º 03’

73º 51’

487

Guyana. Essequibo River. Average Volume: 6 400 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude North

Longitude West

Kilometers

91. Essequibo 1, Guyana

6º 31′

58º 35′

61

92. Essequibo 2, Guyana

6º 19′

58º 34′

85

93. Essequibo 3, Guyana

6º 06′

58º 34′

110

94. Essequibo 4, Guyana

5º 43′

58º 36′

153

95. Cuyuni-Mazaruni, Guyana

6º 24’

58º 38’

177

 United States. Columbia River. Average Volume: 6 250 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Pacific Ocean

Latitude North

Longitude West

Kilometers

96. Astoria, Oregon-Washington

46º 12′

123º 51′

17

97. Mayger, Oregon-Washington

46º 09′

123º 04′

88

98. St. Helens, Oregon-Washington

45º 58′

122º 49′

118

99. Vicyn (Portland), Oregon-Washington

45º 36′

122º 36′

168

100.      Brindal Veil, Oregon-Washington

45º 33’

122º 11’

203

Colombia. Atrato River. Average Volume: 4 250 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude North

Longitude West

Kilometers

101.      Atrato 1, Choco-Antioquia

7º 55′

77º 01′

38

102.      Atrato 2, Choco-Antioquia

8º 48′

77º 07′

57

103.      Atrato 3, Choco

7º 40′

77º 07′

74

104.      Atrato 4, Choco

7º 29′

77º 04′

109

 

United States. Hudson River1 Volume 500 m3/s (maximum water flow per tide 12 000 m3/s)

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude North

Longitude West

 Kilometers

105.   Riverside Dr, New York-New Jersey

40º 46′

73º 59′

21

106.   Yonkers, New York-New Jersey

40º 56′

73º 54′

40

107.   Newburgh, New York

41º 30′

74º 00′

108

108.   Kingston, New York

41º 58′

73º 57′

162

109.   Hudson, New York

42º 16’

73º 47’

204

1 The estuary of the Hudson River is a 240 kilometers long flooded valley. It is located between the city of New York and the Troy dam. Due to its technical characteristics (maximum depth of 66 meters) and abundant tide and draining volumes, the Hudson represents a good alternative to install high production FHEs, while at the same time, it would be a natural model for North America’s FHEs.

Mexico. South Gulf2 Average Combined Volume: 6 800 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Gulf of Mexico)

Latitude North

Longitude West

Kilometers

110.      Grijalva-Usumacinta 1,2 and 3, Tabasco

18º 34′

92º 40′

5,13 and 23

111.      Coatzacoalcos 1 and 2, Veracruz

18º 03′

94º 24′

11 and 26

112.      Papaloapan 1,2 and 3, Veracruz

18º 41’

95º 38’

22, 34 and 50

2 The Grijalva, Usumacinta (3 540 m3/s), Coatzacoalcos (1 940 m3/s) and Papaloapan (1 320 m3/s) rivers have favorable conditions in their respective lower zones to install modern and productive FHEs.

Europe

Russia. Volga River. Average Volume: 8 000 m3/s 

Hydrokinetic Front

Geographic Coordinates

Distance to the Caspian Sea

Latitude North

Longitude East

 Kilometers

113.   Baranovka, Astra can

46º 46′

47º 47′

125

114.   Tsagan Aman, Astrakhan

47º 33′

46º 42′

265

115.   Matveievski, Astrakhan

48º 00′

46º 07′

337

116.   Pokrovka, Volgograd

48º 28’

45º 09’

446

117.   Volgograd, Volgograd

48º 43’

44º 32’

524

The Balkans. Danube River. Average Volume: 6 500 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Black Sea

Latitude North

Longitude East

Kilometers

118.    Tulcea, Rumania-Ucrania

45º 15′

28º 38′

88

119.    Braila, Rumania

45º 16′

27º 58′

162

120.    Hargova, Rumania

44º 44′

27º 52′

237

121.    Silistra, Rumania-Bulgaria

44º 07’

27º 12’

354

122.    Oltenila, Rumania-Bulgaria

44º 06’

26º 47’

389

123.    Giurgiu, Rumania-Bulgaria

43º 53’

26º 00’

460

124.    Nasturelu, Rumania-Bulgaria

43º 39’

25º 35’

504

125.    Corabia, Rumania-Bulgaria

43º 44’

24º 38’

587

126.    Lom, Rumania-Bulgaria

43º 50’

23º 13’

710

Germany. Rhine River3 Average Volume: 2 250 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Sea of the North

Latitude North

 Longitude East

 Kilometers

127. Rheintal 1, Hesse-Renania-Palatinado

50º 00′

7º 51′

517

128. Rheintal 2, Hesse-Renania-Palatinado

50º 04′

7º 46′

496

129. Rheintal 3, Renania-Palatinado

50º 08′

7º 43′

485

130. Rheintal 4, Renania-Palatinado

50º 11’

7º 38’

476

 3 The Rhine River’s gorge is also a natural model that corroborates the advantages and benefits of the FHEs; similarly, it would contribute great volumes of electrical energy to the west of Germany. 

France. Rodano River.  Average Volume: 1 820 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Mediterranean Sea

Latitude North

 Longitude East

 Kilometers

131. Vaucluse

44 º 9.41′

4 º 43.06′

117

132. Aviñón

43 º 56′

4 º 47′

84

133. Lefera Cheval

43 º 46′

4 º 38′

60

 Russia. Komi. Province  Pechora River. Average Volume: 4 100 m3/s

Hydrokinetic Front

            Geographic Coordinates

Distance to the Arctic Ocean

      Latitude North

 Longitude East

 Kilometers

134. Vysokaya Gora

65 º 33′

52 º 01′

500

135. Khabarikha

65 º 53′

52 º 20′

455

136. Novyi Bar

66 º 40′

52º 28′

360

 Ukraine-Russia. Dnieper River.  Average Volume: 1 670 m3/s

Hydrokinetic Front

            Geographic Coordinates

Distance to the Black Sea

      Latitude North

 Longitude East

 Kilometers

137. Dnieper 1

46 º 41′

32 º 50′

114

138. Dnieper 2

46 º 46′

33 º 07′

139

139. Dnieper 3

46 º 45′

33º 19′

155

Poland. Vistula River. Average Volume: 1 080 m3/s

Hydrokinetic Front

            Geographic Coordinates

Distance to the Baltic Sea

      Latitude North

 Longitude East

 Kilometers

140. Piaskowiec

54 º 13′

18 º 56′

18

141. Matowy Wielkie

54 º 04′

18 º 50′

45

142. Male Wioslo

53 º 43′

18 º 48′

83

143. Glogówko Królewskie

53 º 22′

18 º 26′

136

Africa

Congo River Basin. Average Volume: 45 000 m3/s 

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean

Latitude South

Longitude East

 Kilometers

144. Malela, Democratic Republic of Congo-Angola

6º 00′

12º 41′

40

145. Boma, Democratic Republic of Congo-Angola

5º 52′

13º 04′

88

146. Moqui, Democratic Republic of Congo-Angola

5º 53′

13º 22′

123

147. Kinganga, Democratic Republic of Congo

5º 19′

13º 50′

255

148. Banzar-Sauda, Democratic Republic of Congo

5º 00′

14º 07′

317

149. Maloukon, Democratic Republic of Congo-Congo

4º 01′

15º 37′

543

150. Gantchou, Democratic Republic of Congo-Congo

3º 18′

16º 13′

656

151. Mpouya, Democratic Republic of Congo-Congo

2º 36′

16º 14′

736

152. Bolobo, Democratic Republic of Congo-Congo

2º 07′

16º 14′

792

153. Manga, Democratic Republic of Congo-Congo

0º 54′

17º 25′

990

Mozambique. Zambezi River. Average Volume: 4 300 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Indian Ocean

Latitude South

Longitude East

 Kilometers

154. Muanauina

18º 26′

36º 06′

61

155. Jequessene

18º 14′

35º 53′

98

156. Gora

17º 57′

35º 31′

158

157. Zimbau

17º 46′

35º 23′

183

158. Muturara

17º 26’

35º 03’

239

Nigeria. Níger River. Average Volume: 6 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Atlantic Ocean (Gulf of Guinea)

Latitude North

Longitude East

 Kilometers

159. Samabri, Nigeria

5º 19′

6º 27′

183

160. Odugri 1, Nigeria

5º 37′

6º 36′

231

161. Odugri 2, Nigeria

5º 49′

6º 39′

254

162. Onitsha 1, Nigeria

6º 08’

6º 45’

294

163. Onitsha 2, Nigeria

6º 27’

6º 41’

332

164. Ota, Nigeria

6º 59’

6º 41’

398

165. Emiwoziri, Nigeria

7º 45’

6º 45’

486

 Egypt. Nile River4 Average Volume: 5 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Mediterranean Sea

Latitude North

Longitude East

 Kilometers

166. Hulwan, Gizeh-Cairo, Egypt

29º 49′

31º 17′

288

167. Al Qbâbât, Gizeh, Egypt

29º 27′

31º 13′

334

168. Bani Suwayf, Bani Suwayf, Egypt

29º 04′

31º 07′

381

169. Dayr Mawas, Al-Minyâ, Egypt

27º 39′

30º 53′

566

170. Asiut, Asiut, Egypt

27º 11’

31º 12’

650

171. Sohâg, Suhâj, Egypt

26º 37’

31º 42’

739

172. Naj’ Hammâdi, Quina, Egypt

26º 04’

32º 14’

843

173. Al Ma’allah, Quina, Egypt

25º 27’

32º 31’

1 007

174. Nag’ el-Hagandiya, Asuan, Egypt

24º 45’

32º 55’

1 100

4 In the Nile River besides of optimizing the water transfers proposed in project Africa. North Twilight-South Twilight, the FHEs to install there would produce enough electricity for Egypt, Sudan and for other nations of the region. The Nile River is the longest of the world with 6 700 kilometers

Asia

China. Yang Tse Kiang River. Average Volume: 36 000 m3/s 

Hydrokinetic Front

Geographic Coordinates

Distance to the Pacific Ocean

Latitude North

Longitude East

 Kilometers

175.      Luxinzha, Jiangsu

31º 46′

120º 56′

103

176.      Ligang, Jiangsu

31º 57′

120º 04′

205

177.      Zhenzhou, Jiangsu

32º 14’

119º 09’

328

178.      Nanking, Jiangsu

31º 54′

118º 34′

399

179.      Luzhou (Wuhu), Anhui

31º 14’

118º 07’

496

180.      Meigeng, Anhui

30º 45’

117º 36’

593

181.      Leigang, Anhui

30º 08’

116º 50’

712

182.      Huangshi, Hubei

30º 13’

115º 05’

929

183.      Wuhan, Hubei

30º 33’

114º 36’

1 012

184.      Longkou, Hubei

29º 56’

113º 49’

1 193

 India-Bangladesh. Ganges River. Average Volume: 35 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Indian Ocean (Bengala Gulf)

Latitude North

Longitude East

 Kilometers

185.      Faridpur 1, Dhaka

23º 32′

90º 08′

206

186.      Faridpur 2, Dhaka

23º 39′

89º 57′

230

187.   Hâbkhâli, Dhaka-Rajshahi

23º 52’

89º 26’

290

188.      Rajshahi, Rajshahi-Bengala

24º 21′

88º 27′

425

189.      Tildanga, Bengala Occidental

24º 48’

87º 56’

502

190.      Manihan, Bihar

25º 23’

87º 30’

600

191.      Hanaban, Rajshahi (Brahmaputra)

25º 06’

89º 38’

410

 Russia-Siberia. Yenisei. River. Average Volume:: 20 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Artic Ocean (Sea of Kara)

Latitude North

Longitude East

 Kilometers

192.      Zverevsk, Taimar

71º 42′

83º 22′

146

193.      Ust’ Port, Taimir

69º 39′

84º 34′

429

194.      Dudinka, Taimar

69º 03′

86º 05′

563

195.      Jantaika, Taimar

68º 11’

86º 33’

672

196.      Igarka, Krasnoiarsk

67º 37’

86º 16’

742

197.      Poloi, Krasnoiarsk

66º 43’

86º 40’

854

198.      Lakuti, Krasnoiarsk

66º 00’

87º 58’

1 014

199.      Tatarkoie, Krasnoiarsk

64º 46’

87º 46’

1 160

200.      Alinkoie, Krasnoiarsk

63º 16’

87º 36’

1 348

201.      Sumarokovo, Krasnoiarsk

61º 44’

89º 44’

1 560

Russia-Siberia. Lena River. Average Volume: 16 700 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Artic Ocean (Sea of Laptev)

Latitude North

Longitude East

 Kilometers

202.      Kumaj-Suurt, Yakutia-Saja

71º 30′

127º 20′

227

203.      Chebichun, Yakutia-Saja

71º 10′

127º 20′

264

204.      Kiusiur, Yakutia-Saja

70º 41′

127º 21′

329

205.      Siktiaj, Yakutia-Saja

69º 52’

125º 06’

491

206.      Kel ‘Yakutia-Saja

69º 15’

124º 32’

566

207.      Natara, Yakutia-Saja

68º 24’

123º 53’

66

 Cambodia-Laos-Thailand. Mekong River Basin. Average Volume: 15 100 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Indian Ocean (Sea of Southestern China)

Latitude North

Longitude East

 Kilometers

208.   Phumi Sandar Leu, Cambodia

11º 00′

105º 11′

229

209.   Khun Roka Ar, Cambodia

11º 52′

105º 08′

368

210.   Phumi Chrouy Ampil, Cambodia

12º 15′

105º 52′

482

211.   Phumi Roessei Chan, Cambodia

12º 34’

106º 00’

534

212.   Phumi Kang Memay, Cambodia

13º 30’

100º 55’

647

213.   Ban Tasong, Laos

14º 36’

105º 51’

784

214.   Ban Khamva, Laos

15º 18’

105º 38’

877

215.   Savannajet, Thailand-Laos

16º 30’

104º 45’

1 109

216.   Najon Phanom, Thailand-Laos

17º 22’

104º 48’

1 210

217.   Ban Poung, Thailand-Laos

17º 47’

104º 22’

1 275

Myanmar. Irawadi River. Average Volume: 14 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Adaman Sea

Latitude North

Longitude East

 Kilometers

218.      Yogin, Myanmar

18º 06′

95º 25′

250

219.      Kyauktwin, Myanmar

18º 29′

95º 09′

300

220.   Pyê, Myanmar

18º 48′

95º 12′

346

221.      Thyetmyo, Myanmar

19º 27’

95º 11’

423

222.      Minhla, Myanmar

20º 00’

95º 00’

497

 China. Xi Jiang River. Average Volume: 13 500 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Pacific Ocean (Sea of Southestern China)

Latitude North

Longitude East

 Kilometers

223.      Fuwan, Guangdong-China

23º 01′

112º 49′

109

224.      Shayong, Guangdong-China

23º 10′

112º 41′

135

225.      Zhaoqing, Guangdong-China

23º 04′

112º 23′

175

226.      Chongkou, Guangdong-China

23º 07’

111º 54’

244

227.      Ducheng, Guangdong-China

23º 17’

111º 33’

300

228.      Wuzhou, Zhuang of Guangxi

23º 28’

111º 22’

330

229.      Mengilan, Zhuang of Guangxi

23º 27

110º 43’

408

 Russia-Siberia. Ob River. Average Volume: 13 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Artic Ocean (Gulf of Ob)

Latitude North

Longitude East

 Kilometers

230.      Salemal, Yamalo-Nenets

66º 46′

68º 57′

63

231.      Salejard, Yamalo-Nenets

66º 35′

66º 55′

177

232.      Katravozh, Yamalo-enets

66º 14′

66º 00′

247

233.      Varovgort, Yamalo-Nenets

65º 35’

65º 41’

325

234.      Purgrin-Gort, Yamalo-Nenets

65º 09’

65º 18’

381

235.      Sherkali, Janti-Mansi

62º 49’

65º 22

720

236.      Novaia, Janti-Mansi

62º 23

66º 25

800

Russia-Siberia. Amur River. Average Volume: 12 500 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Pacific Ocean (Sea of Ojotsk)

Latitude North

Longitude East

 Kilometers

237.      Nikolaievsk-na-Amure

53º 06′

140º 38′

40

238.      Sajarovka, Jabarovsk

53º 13′

140º 17′

70

239.      Karachi, Jabarovsk

53º 04′

139º 48′

115

240.      Gueri, Jabarovsk

52º 30’

140º 21’

206

241.      Pul’sa, Jabarovsk

51º 23’

139º 20’

373

242.      Aksian, Jabarovsk

50º 50’

138º 00’

503

243.      Komsomolsk del Amur

50º 34’

137º 07’

576

244.      Jabarovsk, Jabarovsk

48º 35’

135º 00’

910

Myanmar. Salween River. Average Runoff: 6 300 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Adaman Sea

Latitude North

Longitude East

 Kilometers

245.      Salween 1, Myanmar

17 º 25′

97 º 46′

148

246.      Salween 2, Myanmar

17 º 25′

97 º 45′

161

247.      Salween 3, Myanmar

17 º 36′

97 º 43′

170

248.      Salween 4, Myanmar

17 º 47’

97 º 41’

191

249.      Salween 5, Myanmar-Thailand

17 º 51’

97 º 41’

203

Pakistan. Indus River. Average Volume: 7 600 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Pacific Ocean (Sea of Okhotsk)

Latitude North

Longitude East

 Kilometers

250.      Jangesar, Sind

24º 10′

67º 39′

62

251.      Goth Guno, Sind

24º 23′

67º 50′

117

252.      Chak Sand, Sind

24º 41′

67º 58′

169

253.      Kot Almo, Sind

24º 53’

68º 07’

209

254.   Kotri (Hyderâbâd), Sind

25º 19’

68º 20’

287

255.   Mânjhand (Hâla), Sind

25º 54’

68º 15’

371

256.   Shàpur (Sehwan), Sind

26º 34’

67º 54’

476

257.   Lârkâna, Sind

27º 35’

68º 23’

646

258.      Rajanpur, Punjab

28º 58’

70º 31’

973

Southeast Vietnam. Song Hong. River. Average Volume: 4 300 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Gulf of Tonkin (Sea of China)

Latitude North

Longitude East

 Kilometers

259.      Song Hong 1, Vietnam

20º 44′

105º 48′

115

260.      Song Hong 2 (Hanoi) Vietnam

21º 05′

105º 49′

162

261.      Song Hong 3, Vietnam

21º 09′

105º 33′

192

262.      Song Hong 4, Vietnam

21º 16’

105º 26’

215

North China. Huang He River*. Average Volume: 3 000 m3/s

Hydrokinetic Front

Geographic Coordinates

Distance to the Gulf of Tonkin (Sea of China)

Latitude North

Longitude East

 Kilometers

263.      Huan He, Shandong

37º 54′

118º 42′

38

264.      Minfeg, Shandong

37º 37′

118º 33′

80

265.      Dianzi, Shandong

37º 25′

118º 14′

122

266.      Taizi, Shandong

37º 08’

117º 31’

204

267.      Xiaolipu, Shandong

36º 26’

116º 36’

338

268.      Dong’ezhen, Shandong

36º 10’

116º 13’

387

269.      Yangji, Shandong-Henan

35º 44’

115º 35’

485

270.      Wuqiu, Shandong-Henan

35º 18’

115º 00’

570

* Due to the enormous volumes of sediment in suspension, the installation of the FHEs could become difficult.

General Notes: 

I.   The great tubular structures that would lead the designed volumes to each of the production lines would comply with strict norms and specifications to provide the required volume with absolute certainty and security.

It is this way that from the first generating equipment to the last; the structures would ensure correct, productive, and efficient operations.

II.  In the mightiest rivers (above 12,500 m3/s), the FFHCs would be formed by five parallel lines of extraction of energy, additionally, each line would have ten groups of turbo-generators similar to those of Kaplan-Bulb type or other similar high-technology equipment.

In mid-sized river as well as in those suggested to be natural models to analyze the FFHCs’ benefits, two or three lines of production would de installed. It means that the technical and economic feasibility would reside on considerably increasing the speed of water flow in the selected hydraulic sections. Without a doubt this requirement is feasible, based on the fact that the sea currents work like great underground rivers; imitating that action by creating artificial currents is possible based on special conception and structures.

This requires an original invention to create the artificial rivers. In this case, this invention is the FFHCs within important rivers and marine straits.

It is that way, that in the 235 proposed FFHCs, an approximated annual production of eleven million Giga-watts/hour would be reached; this is the equivalent to 67% of the present worldwide generation of electrical energy.

Valle de Mexico. November of 2004                                                          www.energywatertm.com


MAIN BAYS AND MARINE STRAITS. HYDROKINETIC FRONTS

America

North America

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude West

 Kilometers

1.    Strait of Bering, Alaska, United States

65º 42′

168º 30′

37

2.    Strait of Juan de Fuca, Canada-United States

48º 18′

124º 03′

22

3.    Strait of Belle Island, Canada

51º 24′

56º 44′

18

4.    Bay of Fundy, Canada-United States

44º 45′

66º 55′

13

5.    Bay of Chesapeake, United States

37º 00’

76º 00’

20

6.    Gulf of California, Mexico

31º 43’

114º 44’

13

7.    Bay of Acapulco, Mexico

16º 49’

99º 52’

3

 Greenland

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude West

 Kilometers

8.    Ittonisseg

70º 14′

22º 45′

38

South America

Hydrokinetic Front

Geographic Coordinates

Width

Latitude South

Longitude East

 Kilometers

9.    Gulf of Ancud, Chile

41º 47′

73º 32′

2.60

10. Strait of Magallanes 1, Chile

52º 30′

69º 35′

3.30

11. Strait of Magallanes 2, Chile

52º 44′

70º 27′

7.70

12. Strait of Magallanes 3, Chile

53º 23′

72º 57′

4.60

Europe 

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

13. Sognafiorden, Norway

61º 04′

5º 30′

3.70

14. Nordfjord, Norway

61º 55′

5º 23′

2.00

15. Strait of Dover, France-Great Britain

51º 01′

1º 31′

35.00

16. Vlissingen, The Netherlands

51º 25′

3º 32′

5.40

17. Den Helder, The Netherlands

52º 58’

4º 43’

2.30

18. Strait of Fehmarn, Denmark-Germany

54º 34’

11º 17’

19.00

19. Helsingborg, Denmark-Sweden

56º 02’

12º 39’

3.50

20. Strait of Kalmarsund, Sweden

56º 40’

16º 26’

5.50

21. Strait of Bonifacio, Corse-Sardegna

41º 19’

9º 12’

12.50

22. Strait of Messina, Italia

38º 15’

15º 39’

3.00

23. Gulf of Patrae-Corinth, Greece

38º 02’

22º 06’

2.50

24. Chalsis-Eubea, Greece

38º 28’

23º 35’

1.00

25. Strait of Dardanelles 1, Turkey

40º 01’

26º 11’

4.50

26. Strait of Dardanelles 2, Turkey

40º 20’

26º 37’

4.00

 United Kingdom and Ireland 

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude West

 Kilometers

27. Sound of Mull, Scotland

56º 37′

6º 01′

2.30

28. Channel of the North, Scotland-Northern Ireland

54º 49′

5º 23′

37.00

29. Strait of Menai, Wales

53º 08′

4º 18′

2.00

30. Channel of Bristol, England-Wales

51º 19′

3º 32′

18.00

31. Shannon, Ireland

52º 34’

9º 40’

3.80

 Iberian Peninsula

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude West

 Kilometers

32. Strait of Gibraltar, Spain

36º 01′

5º 42′

24

Africa

Djibouti

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

33. Bad al Mandab 1, Red Sea-Gulf of Aden

12º 35′

43º 19′

23

34. Bad al Mandab 2, Djibouti-Yemen

12º 39′

43º 26′

29

Tanzania

Hydrokinetic Front

Geographic Coordinates

Width

Latitude South

Longitude East

 Kilometers

35. Channel of Zanzibar

6º 11′

39º 01′

37

Morocco

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude West

 Kilometers

36. Strait of Gibraltar

35º 52′

5º 42′

24

Asia

Oman-Iran 

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

37. Strait of Hormuz

26º 00′

56º 50′

78

 

India-Sri Lanka

 

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

38. Strait of Palk (Gulf of Mannar)

9º 05′

79º 30′

30

 Malaysia-Indonesia 

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

39. Strait of Malacca

2º 06′

101º 58′

50

Indonesia

 

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

40. Strait of Selat Sunda

5º 54′

105º 48′

27

Singapore

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

41. Strait of Singapore (Phillip Channel)

1º 13′

103º 58′

17

Japan

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

42. Kitakyushu, Fukuoka-Yamaguchi

33º 55’

130º 52’

2.50

43. Tomogashima-suido, Hyogo-Wakayama

34º 16’

134º 59’

4.00

44. Tsugaru-Kaikyo, Aomori-Hokkaido

41º 19’

140º 16’

19.50

 Russia

Hydrokinetic Front

Geographic Coordinates

Width

Latitude North

Longitude East

 Kilometers

45. Strait La Perouse (Hokkaido- Sakhalin)

45º 44’

142º 00’

42

46. Strait of Tatarskiy (Sakhalin Island)

52º 12’

141º 35’

7

47. Bay of Penzhinskaya (Sea of Okhotsk)

61º 36’

163º 55’

29

48. Strait of Bering

65º 52’

169º 22’

37

Oceania

Australia

Hydrokinetic Front

Geographic Coordinates

Width

Latitude South

Longitude East

 Kilometers

49. Brisbane, Queensland

27º 22′

153º 26′

2.50

50. Melbourne, Victoria

38º 18′

144º 37′

3.50

51. Backstairs Passage, Adelaide

35º 42′

138º 04′

14.00

New Zealand

Hydrokinetic Front

Geographic Coordinates

Width

Latitude South

Longitude East

 Kilometers

52. Strait of Cook

41º 14′

174º 30′

23

General Notes:

I.   The proposed sites to install Marine Hydrokinetic Fronts (FHCm) of high electricity production would take as much advantage as possible of the submarine currents while taking into account the characteristics and technical advantages that the pre-selected bays and straits have to offer.

II.  The powerful turbo-generating equipment type Kaplan-Bulb or other similar group, would be designed and manufactured with scientific processes of vanguard that would them allow to transform the unlimited kinetic energy from the sea water into enormous submarine currents of electricity.

It means that the technical and economic feasibility would reside on considerably increasing the speed of water flow in the selected hydraulic sections. This requires an original invention, in this case, the FHCs within important rivers and marine straits. Without a doubt this requirement is feasible, based on the fact that the sea currents work like great underground rivers; imitating that action by creating artificial currents is possible based on special conception and structures.

III. It is important to point out that in some of the sites where the FHCm would be located, aggressive meteorological phenomena, such as cyclones, tsunamis, tides, freezing takes place. Reason why, security and protection of the groups of turbo-generators are a high-priority, especially everything related to the laying solid foundations, the stability of the equipment and electromechanical facilities, and conduits of access, ventilation and exit for the conduction cables.

All of the above will avoid damages to the equipment as well as prevent water of entering the engine rooms. The transmission lines that will transport the electrical energy to the substations situated offshore would be inside of well-protected submarine pipes.

IV.  The great tubular structures that would lead the water volumes of design to each of the production lines, besides of complying with strict norms and specifications to provide with total certainty the required volume (in the order of 1,000 ms/s to 1,700 m3/s, depending on the power to allocate), would guarantee the FHCm correct, productive and efficient operation. Of course, the materials, anchoring systems and the cross-sectional transition areas to maintain the speed of design and guarantee the installed power must fulfill all the project’s requirements and concepts.

Manuel Frias Alcaraz

 Mexico City, December 2004

www.energywatertm.com

Mexico, D.F. December of 2004
Updated to July 2011


Acerca de este Artículo