Hydrokinetic Frias Fronts (FFHC)
It is opportune and highly advisable to analyze and study the universe’s continuous expansion and movement. Based on this natural and intricate phenomenon, immense rivers of electricity could be extracted from the unlimited kinetic energy stored in the main fluvial and marine basins of the Earth.
Thus, the essences of the earth’s revolution and rotation movements, which are associated with meteorological phenomenon and define the earth’s weather, are proportionally related to the unlimited hydrokinetic energy that would be extracted from mighty rivers and marine straits.
Additionally, the speed of the water in those fluvial and marine systems, which flow in the same direction as the aforementioned movements (from the West to East), is greater compared to those currents flowing in the opposite direction. It is that way that every hydrodynamic system that fulfills the basic technical requirements and it’s feasible to use, is extremely attractive to produce abundant clean and renewable energy.
Based on the speed of the Earth’s revolution movement, which is near 29,470 m/s, and on the acceleration of Earth’s rotation, which varies upon the latitude in which is measured – in the equator its speed is 445 m/s, while 45 degrees north, its speed is 298 m/s – we can get an idea of the immense potential power available in the universe as well as of its favorable and applicable advantages in defined zones of our planet.
It’s for those reasons that when satisfying a high percentage of the demand of electrical energy through an inexhaustible source, the increasing consumption of fossil fuels that now are used to generate electricity, along with its environmental problems and ecological alterations, would be progressively reduced.
In addition, due to the influence of the nutation phenomenon (periodic variation in the inclination of the earth’s axis caused by the varying gravitational pull of the sun and the moon), the most intense and prolonged rains, as well as the formation and greater incidence of cyclones and hurricanes take place north of the equator. This means that the river basins located near, and in, the northern hemisphere have more volume per area/unit, as opposed to the river basins located south of the equator. This data allows to better evaluate the hydrokinetic potential of the main fluvial and marine systems.
In accordance to the previous statement and with the intention in mind of taking advantage of the middle and lower parts of the mighty rivers, that due to their physiographical conditions, such as wide basins, extensive flooding areas, thick vegetation, enormous volumes of sediments, and the absence of mountainous spurs, is not feasible to build conventional hydroelectric projects. Thus, criteria to apply in the proposed sites where modern and productive Frias Hydrokinetic Fronts (FFHC – by its abbreviation in Spanish) would be installed, consists on the following:
1. It is required that the fluvial systems have an abundant volume of water as well as moderate variations in its level and draining.
This requirement does not apply to the suggested marine FFHCs to be installed in the sea, however, it is required that in some of the pre-selected sites, the groups of submarine turbo-generators are left well protected against natural contingencies (cyclones, tsunamis, freezing, etc.)
2. Selected fluvial and marine sites should be between 30 to 90 meters deep in order to facilitate construction and optimize operations. In mid-sized river as well as in those suggested to be natural models to analyze the FFHCs’ benefits, the minimum depth required would be 15 meters.
If necessary, the selected hydraulic areas would be dredged and prepared in order to satisfy the project’s specifications and norms. The result would be higher energetic production.
3. Due to that the majority of the FFHCs would be located in zones with intense fluvial or marine traffic, it is essential not to interfere with the navigation. That is why the FHCs would be situated in the central areas of the rivers and marine straits; their own access, ventilation, and cables ducts would double-function as navigation signals.
The delimited areas would be four to seven kilometers long and as wide as required by the number of installed parallel lines of extraction.
It is implied that the quality and trustworthiness of the basic hydrologic, geologic, topographic, bathymetric, and oceanography information for the recommended sites guarantees that the concepts, criteria and methods to apply are completely fulfilled. It is also implied that the accuracy of the information will guarantee, during the life span and operation of the submarine electromechanical equipment, high energy, technical and economic indexes.
As a result, the powerful groups of turbo-generators of the kind Kaplan-Bulb (or similar) should be designed and built following scientific and technological processes of vanguard to sustain this new era of industrial development. They would facilitate transforming the valuable fluvial and maritime kinetic energy into permanent power currents, motivating that way, intensive hydroelectricity usage.
It means that the technical and economic viability would be sustained in considerably increasing the speed of water flow in the selected hydraulic sections. This requires an original invention, in this case, the FFHCs, to develop an artificial river within the most important rivers and marine straits. Without a doubt this requirement is feasible, because if the sea currents work like great underground rivers, imitating it by creating artificial currents is possible based on special conception and structure.
It is high-priority to exactly specify the protection, foundations and stability programs for the turbo-generators located in the depths of rivers and marine straits. The same programs need to be specified for the access, ventilation, and electrical cables ducts; it would be this way, that potential damages would be avoided, while the correct water flow would run from and to the engine rooms.
Similarly, the lines of transmission, preferably those of direct current, which would be in charge of transporting the electrical energy to the surface, could be located within submarine pipes. If in the future it were possible to transmit the electricity to the interconnection substations without using either towers or conductive cables – similar to electronic wireless communication – would represent an exponential advance to the FFHCs.
As for the great tubular structures that would drive the volumes of design to each line of extraction/production, from the first to the last turbo-generating equipment, their initial section would have a rectangular shape whereas the final section would be of semicircular form (similar to a greenhouse). With which besides of satisfying strict project conditions in order to certainly and securely supply the demanded volume, they would also facilitate increasing the speed of the water.
To correctly execute them the manufacturing systems, assembly, anchorage, and the cross-sectional sections of transition would require materials capable of maintaining the maximum speeds, and must fulfill all pre-established requirement.
As reference, by applying this original and innovative project planning to the mightiest river of the world, the Amazon River, the diversification and progressive expansion of a process of massive generation of electrical energy would be facilitated.
The Amazon River’s average unloading to the sea is 210,000 m³/s, which is equivalent to the sum of following rivers listed in order of importance: Congo, Orinoco, Yangtze, Ganges, La Plata, Mississippi y Mackenzie.
Thus, when progressing from greatest to the smallest, any fluvial system satisfying the criteria of design could take advantage of such planning.
The foundations and the general planning to take advantage of mighty rivers, where developing common hydroelectric projects is not feasible; as well as the foundations to install FFHCs in marine straits that meet the required characteristics to apply this innovative conception, would be:
a) It would not be required to execute any type of superficial work such as dams, dumping sites, hydroelectric plants, or deflection works, nor would it be necessary to install external electromechanical equipment with the exception of direct transmission lines; which based on advances in high-tension electrical transmission, could evolve to completely suppress towers and conductive cables.
b) Flooding urban centers, cultivation land, archaeological ruins, etc., by creating artificial lakes, would be avoided. Besides, all related problems would also be eliminated such as affectations, indemnifications, opposition from social, environmental and politic organization, as well as problems caused by sediments.
c) If it’s feasible to manufacture and install powerful turbo-generators, the FFHCs formed with several parallel lines of production and separated proportionally to the size of their own equipments, it would be advisable that the speed of the water in the extraction sections is kept as is and even -also could settle electromechanical equipment operating at variable speed to provide for contingencies or hydrodynamic disturbances-, increased within all conduction structures (one river with natural flow and another with greater speed).
d) The access to each production group would take place by means of vertical ducts (similar to the periscope of a submarine), with appropriate height and geometry to prevent water and/or sediments enter to the inside of the turbo generators during flood season or by incidence of natural phenomena. This means that only tube/chimneys would emerge from the water. They’d be signalized and decorated to fit the fluvial or marine landscape.
e) Also barriers of buoys and guiding structures would be placed to delimit the exclusivity zones for the FFHCs and to canalize the total volume of production. These floating barriers would include cross-sectional meshes to control the incursion of the aquatic fauna and to prevent that some animal, be it a fish, reptile, or mammal, is damaged or romped in the turbines’ propellers.
f) Each FFHCs would occupy the central part of the chosen section. They’d be installed in such a way that the volume of water passing through the first submarine group of turbo-generators would activate and drive the following unit and so on until the last electromechanical equipment. This implies that in order to take advantage of the resources of a river basin in a normal way by applying cascading-style hydroelectric works; in the great rivers something similar would be needed, with the only difference that the FFHCs production lines would be placed following the direction of the river flow.
To develop powerful, safe and modern submersible turbo-generators to extract, transform, and generate rivers of clean and renewable energy would be translated into suitable objectives for the worldwide power of the future. Many of the resources currently used for building perforation platforms as well as other systems of extraction could be canalized to build the innovative FFHCs.
This planning demands the coordination of industry professionals and research centers, in order to contribute and apply their experiences and scientific knowledge to build, install and operate turbines and high-technology generators that due of the location to be installed, size and characteristics, would be an important contribution in 21st century.
Before this horizon of work and industrial challenge, the conjunction of efforts and investments in the energy sector as well as manufacturing capital associated with regional governments and industry professionals is fundamental. The same purpose and commitment must prevail to execute the transmission systems and electric transformation, because due to environmental restrictions, distances to cover, affectations, etc., their construction is complicated and the costs are high.
Hence, the transmission and interconnection systems would use high-technology materials in their equipment, as well as in their installation and transmission procedures in order to allow connecting all substations without conventional infrastructure in the future.
With imagination, investigation, invention and the decision from financial, industrial and construction partnerships and venture capitalists, the proposed FFHCs would find their modern concepts of design as well as their projects to be a reality. Their abundant and inexpensive hydrokinetic production would become a strategic and high-priority factor in order to save enormous volumes of fossil fuels such as petroleum, gas, and coal. They would also help reduce inherent costs, risks and oppositions to the nuclear energy. In addition, FHCs would contribute to protect and restore the earth’s normal climate.
In the main rivers it is considered that the FFHCs would produce twelve million Gigawatts?hour; equivalent to 70% of the present worldwide generation of electricity.
Without a doubt, their attainment demands a different vision and mentality in order to confront, surpass and go beyond the challenge of applying, increasing and diversifying plans and programs of massive production of electric energy in rivers that do not allow the construction of traditional hydroelectric projects.
Naturally, organizations like the United Nations, World Bank, International Monetary Fund, Asia-Pacific Cooperation, European Union and International Communities of Cooperation and Promotion, would have a preponderant function in supporting the worldwide implementation of the FHCs throughout their various stages through renewed politics and alliances of progress.
The objective is to make of the FFHCs an equitable intention and unavoidable commitment between countries and towns that have and share important rivers and marine straits. Also an objective is to extend the FFHCs energetic contributions to other regions and/or nations beyond their borders. Such actions would forge and fortify a sense of collaboration between countries and would install common goals to ensure the posterity and quality of life in Earth.
Based on correctly taking advantage of the unlimited energy of movement, combined with the determination of governments, multi-national, financial and economic organizations, the rivers of energy that the FFHCs would produce will result in profitable business models as well as in a priceless benefit for humanity.
MAIN RIVERS IN THE WORLD
America
Amazonian Basin. Amazon River. Average Volume: 210 000 m³/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude South |
Longitude West |
Kilometers |
|
1. Oran, Peru |
3º 21′ |
72º 31′ |
3 450 |
2. Benjamín Constant, Brazil |
4º 20′ |
69º 48′ |
3 100 |
3. Santo Antonio de Ica, Brazil |
3º 00′ |
67º 53′ |
2 600 |
4. Fonte Boa, Brazil |
2º 37′ |
65º 38′ |
2 295 |
5. Cayambe, Brazil |
3º 30’ |
64º 26’ |
2 100 |
6. Coari, Brazil |
4º 03’ |
63º 01’ |
1 935 |
7. Anama, Brazil |
3º 35’ |
61º 18’ |
1 717 |
8. Manacapuro, Brazil |
3º 19’ |
60º 34’ |
1 620 |
9. Manaus, Brazil |
3º 06’ |
59º 51’ |
1 530 |
10. Itaquatiara, Brazil |
3º 09’ |
58º 26’ |
1 255 |
11. Valeria, Brazil |
2º 24’ |
56º 26’ |
960 |
12. Obidos, Brazil |
1º 57’ |
55º 30’ |
820 |
13. Santarem, Brazil |
2º 24’ |
54º 15’ |
650 |
14. Canal Norte, Brazil |
1º 19’ |
51º 54’ |
350 |
15. Canal Sur (Gurupa), Brazil |
1º 25’ |
51º 42’ |
350 |
16. Bacarena, Brazil |
1º 30’ |
48º 48’ |
150 |
Colombia-Peru. Amazonas River. Average Volume: 210 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Ocean |
|
Latitude South |
Longitude West |
Kilometers |
|
17. Nazaret, Amazonas |
4 º 07′ |
70 º 03′ |
2958 |
18. C. Paraná, Amazonas |
3 º 58′ |
70 º 10′ |
2980 |
Representative tributaries that flow into the Amazon River:
Left Bank. Negro, Caquetá-Jurupá and Putumayo Rivers.
Brazil. Negro River. Average flow: 29 300 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Amazon River |
|
Latitude North |
Longitude West |
Kilometers |
|
19. Manaos-Piricatuba, Amazonas |
3 º 04′ |
60 º 16′ |
23 |
20. Boepadi, Amazonas |
2 º 07′ |
61 º 10′ |
45 |
21. Roraima, Amazonas |
1 º 24′ |
61 º 50′ |
202 |
Brazil. Caquetá-Jurupá River. Average flow: 18 600 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Amazon River |
|
Latitude North |
Longitude West |
Kilometers |
|
22. Caqutá-Jurupá I, Amazonas |
2 º 59′ |
64 º 48′ |
24 |
23. Caquetá-Jurupá II, Amazonas |
2 º 30′ |
63 º 04′ |
100 |
24. Caquetá-Jurupá III, Amazonas |
1 º 52′ |
67 º 02′ |
389 |
Brazil. Putumayo River. Average flow: 8 760 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Amazon River |
|
Latitude North |
Longitude West |
Kilometers |
|
25. Putumayo I, Amazonas |
3 º 09′ |
68 º 01′ |
5 |
26. Putumayo II, Amazonas |
2 º 59′ |
68 º 17′ |
60 |
27. Putumayo III, Amazonas |
2 º 55′ |
68 º 36′ |
116 |
Right Bank. Madre de Dios-Madeira, Ucayali and Marañón Rivers.
Brazil. Madre de Dios-Madeira River. Average flow: 31 200 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Amazon River |
|
Latitude North |
Longitude West |
Kilometers |
|
28. Arari, Madeira |
3 º 25′ |
58 º 47′ |
10 |
29. Axinim, Madeira |
3 º 57′ |
59 º 17′ |
103 |
30. Cachoeirinha, Madeira |
5 º 29′ |
60 º 47′ |
378 |
31. Curucá, Rondonía |
6 º 02′ |
61 º 42′ |
528 |
Peru. Ucayali River. Average flow: 11 500 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Amazon River |
|
Latitude North |
Longitude West |
Kilometers |
|
32. Ucayali I, Loreto |
4 º 33′ |
73 º 30′ |
21 |
33. Ucayali II, Loreto |
4 º 47′ |
73 º 38′ |
57 |
34. Ucayali III, Loreto |
5 º 06′ |
74 º 03′ |
179 |
Peru. Marañón River. Average flow: 16 200 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Amazon River |
|
Latitude North |
Longitude West |
Kilometers |
|
35. Loreto, Loreto |
4 º 30′ |
73 º 33′ |
13 |
36. San Regis, Loreto |
4 º 31′ |
73 º 55′ |
66 |
37. San Pedro, Loreto |
4 º 32′ |
74 º 12′ |
102 |
38. Parinari, Loreto |
4 º 34′ |
74 º 29′ |
156 |
Venezuela and Colombia. Orinoco River. Average Volume: 37 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Caribbean) |
|
Latitude North |
Longitude West |
Kilometers |
|
39. Puerto Nariño, Vichada-Amazonas |
5º 00′ |
67º 48′ |
1 130 |
40. Orope, Apure-Bolivar |
6º 17′ |
67º 18′ |
948 |
41. Maroni, Apure-Bolivar |
7º 27′ |
66º 30′ |
768 |
42. Parmana, Guarico-Bolivar |
7º 52′ |
65º 40′ |
654 |
43. El Piñal, Anzoategui-Bolivar |
7º 41’ |
64º 43’ |
538 |
44. Simon Bolivar, Anzoategui-Bolívar |
8º 07’ |
63º 43’ |
378 |
45. Guayana, Monagas-Delta Amacuro |
8º 24’ |
62º 37’ |
245 |
46. Imperial, Monagas-Delta Amacuro |
8º 33’ |
62º 20’ |
208 |
Argentina and Uruguay. La Plata River. Average Volume: 28 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude South |
Longitude West |
Kilometers |
|
47. La Plata River, Buenos Aires |
34º 30′ |
58º 11′ |
164 |
48. Uruguay River 1, Buenos Aires-Colonia |
34º 04′ |
58º 19′ |
214 |
49. Uruguay River 2, Entre Rios-Soriano |
33º 34′ |
58º 28′ |
274 |
50. Rosario, Santa Fe-Entre Rios |
32º 48′ |
60º 41′ |
505 |
51. Diamante, Santa Fe-Entre Rios |
32º 05’ |
60º 39’ |
591 |
52. Santa Elena, Santa Fe-Entre Rios |
30º 55’ |
59º 47’ |
764 |
53. Esquina, Santa Fe-Corrientes |
29º 49’ |
59º 38’ |
897 |
54. Goya, Santa Fe-Corrientes |
29º 05’ |
59º 16’ |
1 003 |
55. Peguaho, Chaco-Corrientes |
27º 43’ |
58º 48’ |
1 175 |
United States. Mississippi River. Average Volume: 19 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Gulf of Mexico) |
|
Latitude North |
Longitude West |
Kilometers |
|
56. Greenwood, Louisiana |
29º 47′ |
90º 00′ |
135 |
57. San Gabriel, Louisiana |
30º 15′ |
91º 07′ |
345 |
58. Black Hawk, Louisiana-Mississippi |
31º 10′ |
91º 35′ |
516 |
59. Golden Landing, Louisiana-Mississippi |
31º 47′ |
91º 21′ |
606 |
60. Vicksburg, Louisiana-Mississippi |
32º 16’ |
90º 57’ |
689 |
61. Longwood, Arkansas-Mississippi |
33º 06’ |
91º 09’ |
829 |
62. Dusha, Arkansas-Mississippi |
33º 45’ |
91º 07’ |
927 |
63. Memphis, Tennessee |
35º 00’ |
90º 15’ |
1 156 |
Canada. San Lorenzo River. Average Volume: 14 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude North |
Longitude West |
Kilometers |
|
64. Contrecoeur, Quebec |
45º 52′ |
73º 15′ |
819 |
65. Batiscan, Quebec |
46º 28′ |
72º 14′ |
711 |
66. Deschambault, Quebec |
46º 39′ |
71º 54′ |
678 |
67. Saint Nicolas, Quebec |
46º 43′ |
71º 24′ |
638 |
68. Ile D’ Orleans South, Quebec |
46º 51’ |
70º 58’ |
596 |
69. Ile D’ Orleans North, Quebec |
46º 57’ |
71º 00’ |
596 |
70. Saint Denis, Quebec |
47º 30’ |
70º 06’ |
500 |
Canada. Mackenzie River. Average Volume: 10 500 m3/ss
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Beaufort Sea) |
|
Latitude North |
Longitude West |
Kilometers |
|
71. Mackenzie 1, Northern Territories |
68º 00′ |
134º 27′ |
214 |
72. Mackenzie 2, Northern Eastern Territories |
67º 12′ |
132º 56′ |
336 |
73. Mackenzie 3, Northern Territories |
67º 15′ |
130º 21′ |
471 |
74. Mackenzie 4, Northern Territories |
66º 11′ |
128º 54′ |
631 |
75. Mackenzie 5, Northern Territories |
65º 09’ |
126º 23’ |
828 |
76. Mackenzie 6, Northern Territories |
64º 47’ |
125º 06’ |
911 |
77. Mackenzie 7, Northern Territories |
64º 06’ |
124º 25’ |
1 006 |
United States. Yukon River. Average Volume: 8 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Bering Sea) |
|
Latitude North |
Longitude West |
Kilometers |
|
78. Mountain Village, Alaska-USA |
62º 04′ |
163º 35′ |
144 |
79. Ohogamiut, Alaska-USA |
61º 36′ |
161º 40′ |
315 |
80. Kako Landing, Alaska-USA |
61º 52′ |
160º 36′ |
372 |
81. Grayling, Alaska-USA |
62º 49′ |
160º 04′ |
542 |
82. Innoko, Alaska-USA |
63º 39’ |
159º 22’ |
647 |
83. Nulato, Alaska-USA |
64º 49’ |
157º 56’ |
805 |
84. Galena, Alaska-USA |
64º 40’ |
156º 22’ |
900 |
Colombia. Magdalena River. Average Volume: 7 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Caribbean) |
|
Latitude North |
Longitude West |
Kilometers |
|
85. Barranquilla, Atlantic-Magdalena |
11º 01′ |
74º 47′ |
14 |
86. Santa Rita, Atlantic-Magdalena |
10º 34′ |
74º 43′ |
70 |
87. Guaquiri, Bolivar-Magdalena |
10º 07′ |
74º 56′ |
125 |
88. El Vesubio, Bolivar-Magdalena |
9º 17′ |
74º 32′ |
264 |
89. Pueblo Nuevo, Bolivar-Cesar |
8º 52’ |
73º 50’ |
384 |
90. Campo Pillares, BolivarSanta |
8º 03’ |
73º 51’ |
487 |
Guyana. Essequibo River. Average Volume: 6 400 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude North |
Longitude West |
Kilometers |
|
91. Essequibo 1, Guyana |
6º 31′ |
58º 35′ |
61 |
92. Essequibo 2, Guyana |
6º 19′ |
58º 34′ |
85 |
93. Essequibo 3, Guyana |
6º 06′ |
58º 34′ |
110 |
94. Essequibo 4, Guyana |
5º 43′ |
58º 36′ |
153 |
95. Cuyuni-Mazaruni, Guyana |
6º 24’ |
58º 38’ |
177 |
United States. Columbia River. Average Volume: 6 250 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Pacific Ocean |
|
Latitude North |
Longitude West |
Kilometers |
|
96. Astoria, Oregon-Washington |
46º 12′ |
123º 51′ |
17 |
97. Mayger, Oregon-Washington |
46º 09′ |
123º 04′ |
88 |
98. St. Helens, Oregon-Washington |
45º 58′ |
122º 49′ |
118 |
99. Vicyn (Portland), Oregon-Washington |
45º 36′ |
122º 36′ |
168 |
100. Brindal Veil, Oregon-Washington |
45º 33’ |
122º 11’ |
203 |
Colombia. Atrato River. Average Volume: 4 250 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude North |
Longitude West |
Kilometers |
|
101. Atrato 1, Choco-Antioquia |
7º 55′ |
77º 01′ |
38 |
102. Atrato 2, Choco-Antioquia |
8º 48′ |
77º 07′ |
57 |
103. Atrato 3, Choco |
7º 40′ |
77º 07′ |
74 |
104. Atrato 4, Choco |
7º 29′ |
77º 04′ |
109 |
United States. Hudson River1 Volume 500 m3/s (maximum water flow per tide 12 000 m3/s)
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude North |
Longitude West |
Kilometers |
|
105. Riverside Dr, New York-New Jersey |
40º 46′ |
73º 59′ |
21 |
106. Yonkers, New York-New Jersey |
40º 56′ |
73º 54′ |
40 |
107. Newburgh, New York |
41º 30′ |
74º 00′ |
108 |
108. Kingston, New York |
41º 58′ |
73º 57′ |
162 |
109. Hudson, New York |
42º 16’ |
73º 47’ |
204 |
1 The estuary of the Hudson River is a 240 kilometers long flooded valley. It is located between the city of New York and the Troy dam. Due to its technical characteristics (maximum depth of 66 meters) and abundant tide and draining volumes, the Hudson represents a good alternative to install high production FHEs, while at the same time, it would be a natural model for North America’s FHEs.
Mexico. South Gulf2 Average Combined Volume: 6 800 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Gulf of Mexico) |
|
Latitude North |
Longitude West |
Kilometers |
|
110. Grijalva-Usumacinta 1,2 and 3, Tabasco |
18º 34′ |
92º 40′ |
5,13 and 23 |
111. Coatzacoalcos 1 and 2, Veracruz |
18º 03′ |
94º 24′ |
11 and 26 |
112. Papaloapan 1,2 and 3, Veracruz |
18º 41’ |
95º 38’ |
22, 34 and 50 |
2 The Grijalva, Usumacinta (3 540 m3/s), Coatzacoalcos (1 940 m3/s) and Papaloapan (1 320 m3/s) rivers have favorable conditions in their respective lower zones to install modern and productive FHEs.
Europe
Russia. Volga River. Average Volume: 8 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Caspian Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
113. Baranovka, Astra can |
46º 46′ |
47º 47′ |
125 |
114. Tsagan Aman, Astrakhan |
47º 33′ |
46º 42′ |
265 |
115. Matveievski, Astrakhan |
48º 00′ |
46º 07′ |
337 |
116. Pokrovka, Volgograd |
48º 28’ |
45º 09’ |
446 |
117. Volgograd, Volgograd |
48º 43’ |
44º 32’ |
524 |
The Balkans. Danube River. Average Volume: 6 500 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Black Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
118. Tulcea, Rumania-Ucrania |
45º 15′ |
28º 38′ |
88 |
119. Braila, Rumania |
45º 16′ |
27º 58′ |
162 |
120. Hargova, Rumania |
44º 44′ |
27º 52′ |
237 |
121. Silistra, Rumania-Bulgaria |
44º 07’ |
27º 12’ |
354 |
122. Oltenila, Rumania-Bulgaria |
44º 06’ |
26º 47’ |
389 |
123. Giurgiu, Rumania-Bulgaria |
43º 53’ |
26º 00’ |
460 |
124. Nasturelu, Rumania-Bulgaria |
43º 39’ |
25º 35’ |
504 |
125. Corabia, Rumania-Bulgaria |
43º 44’ |
24º 38’ |
587 |
126. Lom, Rumania-Bulgaria |
43º 50’ |
23º 13’ |
710 |
Germany. Rhine River3 Average Volume: 2 250 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Sea of the North |
|
Latitude North |
Longitude East |
Kilometers |
|
127. Rheintal 1, Hesse-Renania-Palatinado |
50º 00′ |
7º 51′ |
517 |
128. Rheintal 2, Hesse-Renania-Palatinado |
50º 04′ |
7º 46′ |
496 |
129. Rheintal 3, Renania-Palatinado |
50º 08′ |
7º 43′ |
485 |
130. Rheintal 4, Renania-Palatinado |
50º 11’ |
7º 38’ |
476 |
3 The Rhine River’s gorge is also a natural model that corroborates the advantages and benefits of the FHEs; similarly, it would contribute great volumes of electrical energy to the west of Germany.
France. Rodano River. Average Volume: 1 820 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Mediterranean Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
131. Vaucluse |
44 º 9.41′ |
4 º 43.06′ |
117 |
132. Aviñón |
43 º 56′ |
4 º 47′ |
84 |
133. Lefera Cheval |
43 º 46′ |
4 º 38′ |
60 |
Russia. Komi. Province Pechora River. Average Volume: 4 100 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Arctic Ocean |
|||
Latitude North |
Longitude East |
Kilometers |
|||
134. Vysokaya Gora |
65 º 33′ |
52 º 01′ |
500 |
||
135. Khabarikha |
65 º 53′ |
52 º 20′ |
455 |
||
136. Novyi Bar |
66 º 40′ |
52º 28′ |
360 |
||
Ukraine-Russia. Dnieper River. Average Volume: 1 670 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Black Sea |
||||
Latitude North |
Longitude East |
Kilometers |
||||
137. Dnieper 1 |
46 º 41′ |
32 º 50′ |
114 |
|||
138. Dnieper 2 |
46 º 46′ |
33 º 07′ |
139 |
|||
139. Dnieper 3 |
46 º 45′ |
33º 19′ |
155 |
|||
Poland. Vistula River. Average Volume: 1 080 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Baltic Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
140. Piaskowiec |
54 º 13′ |
18 º 56′ |
18 |
141. Matowy Wielkie |
54 º 04′ |
18 º 50′ |
45 |
142. Male Wioslo |
53 º 43′ |
18 º 48′ |
83 |
143. Glogówko Królewskie |
53 º 22′ |
18 º 26′ |
136 |
Africa
Congo River Basin. Average Volume: 45 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean |
|
Latitude South |
Longitude East |
Kilometers |
|
144. Malela, Democratic Republic of Congo-Angola |
6º 00′ |
12º 41′ |
40 |
145. Boma, Democratic Republic of Congo-Angola |
5º 52′ |
13º 04′ |
88 |
146. Moqui, Democratic Republic of Congo-Angola |
5º 53′ |
13º 22′ |
123 |
147. Kinganga, Democratic Republic of Congo |
5º 19′ |
13º 50′ |
255 |
148. Banzar-Sauda, Democratic Republic of Congo |
5º 00′ |
14º 07′ |
317 |
149. Maloukon, Democratic Republic of Congo-Congo |
4º 01′ |
15º 37′ |
543 |
150. Gantchou, Democratic Republic of Congo-Congo |
3º 18′ |
16º 13′ |
656 |
151. Mpouya, Democratic Republic of Congo-Congo |
2º 36′ |
16º 14′ |
736 |
152. Bolobo, Democratic Republic of Congo-Congo |
2º 07′ |
16º 14′ |
792 |
153. Manga, Democratic Republic of Congo-Congo |
0º 54′ |
17º 25′ |
990 |
Mozambique. Zambezi River. Average Volume: 4 300 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Indian Ocean |
|
Latitude South |
Longitude East |
Kilometers |
|
154. Muanauina |
18º 26′ |
36º 06′ |
61 |
155. Jequessene |
18º 14′ |
35º 53′ |
98 |
156. Gora |
17º 57′ |
35º 31′ |
158 |
157. Zimbau |
17º 46′ |
35º 23′ |
183 |
158. Muturara |
17º 26’ |
35º 03’ |
239 |
Nigeria. Níger River. Average Volume: 6 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Atlantic Ocean (Gulf of Guinea) |
|
Latitude North |
Longitude East |
Kilometers |
|
159. Samabri, Nigeria |
5º 19′ |
6º 27′ |
183 |
160. Odugri 1, Nigeria |
5º 37′ |
6º 36′ |
231 |
161. Odugri 2, Nigeria |
5º 49′ |
6º 39′ |
254 |
162. Onitsha 1, Nigeria |
6º 08’ |
6º 45’ |
294 |
163. Onitsha 2, Nigeria |
6º 27’ |
6º 41’ |
332 |
164. Ota, Nigeria |
6º 59’ |
6º 41’ |
398 |
165. Emiwoziri, Nigeria |
7º 45’ |
6º 45’ |
486 |
Egypt. Nile River4 Average Volume: 5 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Mediterranean Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
166. Hulwan, Gizeh-Cairo, Egypt |
29º 49′ |
31º 17′ |
288 |
167. Al Qbâbât, Gizeh, Egypt |
29º 27′ |
31º 13′ |
334 |
168. Bani Suwayf, Bani Suwayf, Egypt |
29º 04′ |
31º 07′ |
381 |
169. Dayr Mawas, Al-Minyâ, Egypt |
27º 39′ |
30º 53′ |
566 |
170. Asiut, Asiut, Egypt |
27º 11’ |
31º 12’ |
650 |
171. Sohâg, Suhâj, Egypt |
26º 37’ |
31º 42’ |
739 |
172. Naj’ Hammâdi, Quina, Egypt |
26º 04’ |
32º 14’ |
843 |
173. Al Ma’allah, Quina, Egypt |
25º 27’ |
32º 31’ |
1 007 |
174. Nag’ el-Hagandiya, Asuan, Egypt |
24º 45’ |
32º 55’ |
1 100 |
4 In the Nile River besides of optimizing the water transfers proposed in project Africa. North Twilight-South Twilight, the FHEs to install there would produce enough electricity for Egypt, Sudan and for other nations of the region. The Nile River is the longest of the world with 6 700 kilometers
Asia
China. Yang Tse Kiang River. Average Volume: 36 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Pacific Ocean |
|
Latitude North |
Longitude East |
Kilometers |
|
175. Luxinzha, Jiangsu |
31º 46′ |
120º 56′ |
103 |
176. Ligang, Jiangsu |
31º 57′ |
120º 04′ |
205 |
177. Zhenzhou, Jiangsu |
32º 14’ |
119º 09’ |
328 |
178. Nanking, Jiangsu |
31º 54′ |
118º 34′ |
399 |
179. Luzhou (Wuhu), Anhui |
31º 14’ |
118º 07’ |
496 |
180. Meigeng, Anhui |
30º 45’ |
117º 36’ |
593 |
181. Leigang, Anhui |
30º 08’ |
116º 50’ |
712 |
182. Huangshi, Hubei |
30º 13’ |
115º 05’ |
929 |
183. Wuhan, Hubei |
30º 33’ |
114º 36’ |
1 012 |
184. Longkou, Hubei |
29º 56’ |
113º 49’ |
1 193 |
India-Bangladesh. Ganges River. Average Volume: 35 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Indian Ocean (Bengala Gulf) |
|
Latitude North |
Longitude East |
Kilometers |
|
185. Faridpur 1, Dhaka |
23º 32′ |
90º 08′ |
206 |
186. Faridpur 2, Dhaka |
23º 39′ |
89º 57′ |
230 |
187. Hâbkhâli, Dhaka-Rajshahi |
23º 52’ |
89º 26’ |
290 |
188. Rajshahi, Rajshahi-Bengala |
24º 21′ |
88º 27′ |
425 |
189. Tildanga, Bengala Occidental |
24º 48’ |
87º 56’ |
502 |
190. Manihan, Bihar |
25º 23’ |
87º 30’ |
600 |
191. Hanaban, Rajshahi (Brahmaputra) |
25º 06’ |
89º 38’ |
410 |
Russia-Siberia. Yenisei. River. Average Volume:: 20 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Artic Ocean (Sea of Kara) |
|
Latitude North |
Longitude East |
Kilometers |
|
192. Zverevsk, Taimar |
71º 42′ |
83º 22′ |
146 |
193. Ust’ Port, Taimir |
69º 39′ |
84º 34′ |
429 |
194. Dudinka, Taimar |
69º 03′ |
86º 05′ |
563 |
195. Jantaika, Taimar |
68º 11’ |
86º 33’ |
672 |
196. Igarka, Krasnoiarsk |
67º 37’ |
86º 16’ |
742 |
197. Poloi, Krasnoiarsk |
66º 43’ |
86º 40’ |
854 |
198. Lakuti, Krasnoiarsk |
66º 00’ |
87º 58’ |
1 014 |
199. Tatarkoie, Krasnoiarsk |
64º 46’ |
87º 46’ |
1 160 |
200. Alinkoie, Krasnoiarsk |
63º 16’ |
87º 36’ |
1 348 |
201. Sumarokovo, Krasnoiarsk |
61º 44’ |
89º 44’ |
1 560 |
Russia-Siberia. Lena River. Average Volume: 16 700 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Artic Ocean (Sea of Laptev) |
|
Latitude North |
Longitude East |
Kilometers |
|
202. Kumaj-Suurt, Yakutia-Saja |
71º 30′ |
127º 20′ |
227 |
203. Chebichun, Yakutia-Saja |
71º 10′ |
127º 20′ |
264 |
204. Kiusiur, Yakutia-Saja |
70º 41′ |
127º 21′ |
329 |
205. Siktiaj, Yakutia-Saja |
69º 52’ |
125º 06’ |
491 |
206. Kel ‘Yakutia-Saja |
69º 15’ |
124º 32’ |
566 |
207. Natara, Yakutia-Saja |
68º 24’ |
123º 53’ |
66 |
Cambodia-Laos-Thailand. Mekong River Basin. Average Volume: 15 100 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Indian Ocean (Sea of Southestern China) |
|
Latitude North |
Longitude East |
Kilometers |
|
208. Phumi Sandar Leu, Cambodia |
11º 00′ |
105º 11′ |
229 |
209. Khun Roka Ar, Cambodia |
11º 52′ |
105º 08′ |
368 |
210. Phumi Chrouy Ampil, Cambodia |
12º 15′ |
105º 52′ |
482 |
211. Phumi Roessei Chan, Cambodia |
12º 34’ |
106º 00’ |
534 |
212. Phumi Kang Memay, Cambodia |
13º 30’ |
100º 55’ |
647 |
213. Ban Tasong, Laos |
14º 36’ |
105º 51’ |
784 |
214. Ban Khamva, Laos |
15º 18’ |
105º 38’ |
877 |
215. Savannajet, Thailand-Laos |
16º 30’ |
104º 45’ |
1 109 |
216. Najon Phanom, Thailand-Laos |
17º 22’ |
104º 48’ |
1 210 |
217. Ban Poung, Thailand-Laos |
17º 47’ |
104º 22’ |
1 275 |
Myanmar. Irawadi River. Average Volume: 14 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Adaman Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
218. Yogin, Myanmar |
18º 06′ |
95º 25′ |
250 |
219. Kyauktwin, Myanmar |
18º 29′ |
95º 09′ |
300 |
220. Pyê, Myanmar |
18º 48′ |
95º 12′ |
346 |
221. Thyetmyo, Myanmar |
19º 27’ |
95º 11’ |
423 |
222. Minhla, Myanmar |
20º 00’ |
95º 00’ |
497 |
China. Xi Jiang River. Average Volume: 13 500 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Pacific Ocean (Sea of Southestern China) |
|
Latitude North |
Longitude East |
Kilometers |
|
223. Fuwan, Guangdong-China |
23º 01′ |
112º 49′ |
109 |
224. Shayong, Guangdong-China |
23º 10′ |
112º 41′ |
135 |
225. Zhaoqing, Guangdong-China |
23º 04′ |
112º 23′ |
175 |
226. Chongkou, Guangdong-China |
23º 07’ |
111º 54’ |
244 |
227. Ducheng, Guangdong-China |
23º 17’ |
111º 33’ |
300 |
228. Wuzhou, Zhuang of Guangxi |
23º 28’ |
111º 22’ |
330 |
229. Mengilan, Zhuang of Guangxi |
23º 27 |
110º 43’ |
408 |
Russia-Siberia. Ob River. Average Volume: 13 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Artic Ocean (Gulf of Ob) |
|
Latitude North |
Longitude East |
Kilometers |
|
230. Salemal, Yamalo-Nenets |
66º 46′ |
68º 57′ |
63 |
231. Salejard, Yamalo-Nenets |
66º 35′ |
66º 55′ |
177 |
232. Katravozh, Yamalo-enets |
66º 14′ |
66º 00′ |
247 |
233. Varovgort, Yamalo-Nenets |
65º 35’ |
65º 41’ |
325 |
234. Purgrin-Gort, Yamalo-Nenets |
65º 09’ |
65º 18’ |
381 |
235. Sherkali, Janti-Mansi |
62º 49’ |
65º 22 |
720 |
236. Novaia, Janti-Mansi |
62º 23 |
66º 25 |
800 |
Russia-Siberia. Amur River. Average Volume: 12 500 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Pacific Ocean (Sea of Ojotsk) |
|
Latitude North |
Longitude East |
Kilometers |
|
237. Nikolaievsk-na-Amure |
53º 06′ |
140º 38′ |
40 |
238. Sajarovka, Jabarovsk |
53º 13′ |
140º 17′ |
70 |
239. Karachi, Jabarovsk |
53º 04′ |
139º 48′ |
115 |
240. Gueri, Jabarovsk |
52º 30’ |
140º 21’ |
206 |
241. Pul’sa, Jabarovsk |
51º 23’ |
139º 20’ |
373 |
242. Aksian, Jabarovsk |
50º 50’ |
138º 00’ |
503 |
243. Komsomolsk del Amur |
50º 34’ |
137º 07’ |
576 |
244. Jabarovsk, Jabarovsk |
48º 35’ |
135º 00’ |
910 |
Myanmar. Salween River. Average Runoff: 6 300 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Adaman Sea |
|
Latitude North |
Longitude East |
Kilometers |
|
245. Salween 1, Myanmar |
17 º 25′ |
97 º 46′ |
148 |
246. Salween 2, Myanmar |
17 º 25′ |
97 º 45′ |
161 |
247. Salween 3, Myanmar |
17 º 36′ |
97 º 43′ |
170 |
248. Salween 4, Myanmar |
17 º 47’ |
97 º 41’ |
191 |
249. Salween 5, Myanmar-Thailand |
17 º 51’ |
97 º 41’ |
203 |
Pakistan. Indus River. Average Volume: 7 600 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Pacific Ocean (Sea of Okhotsk) |
||
Latitude North |
Longitude East |
Kilometers |
||
250. Jangesar, Sind |
24º 10′ |
67º 39′ |
62 |
|
251. Goth Guno, Sind |
24º 23′ |
67º 50′ |
117 |
|
252. Chak Sand, Sind |
24º 41′ |
67º 58′ |
169 |
|
253. Kot Almo, Sind |
24º 53’ |
68º 07’ |
209 |
|
254. Kotri (Hyderâbâd), Sind |
25º 19’ |
68º 20’ |
287 |
|
255. Mânjhand (Hâla), Sind |
25º 54’ |
68º 15’ |
371 |
|
256. Shàpur (Sehwan), Sind |
26º 34’ |
67º 54’ |
476 |
|
257. Lârkâna, Sind |
27º 35’ |
68º 23’ |
646 |
|
258. Rajanpur, Punjab |
28º 58’ |
70º 31’ |
973 |
|
Southeast Vietnam. Song Hong. River. Average Volume: 4 300 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Gulf of Tonkin (Sea of China) |
|
Latitude North |
Longitude East |
Kilometers |
|
259. Song Hong 1, Vietnam |
20º 44′ |
105º 48′ |
115 |
260. Song Hong 2 (Hanoi) Vietnam |
21º 05′ |
105º 49′ |
162 |
261. Song Hong 3, Vietnam |
21º 09′ |
105º 33′ |
192 |
262. Song Hong 4, Vietnam |
21º 16’ |
105º 26’ |
215 |
North China. Huang He River*. Average Volume: 3 000 m3/s
Hydrokinetic Front |
Geographic Coordinates |
Distance to the Gulf of Tonkin (Sea of China) |
|
Latitude North |
Longitude East |
Kilometers |
|
263. Huan He, Shandong |
37º 54′ |
118º 42′ |
38 |
264. Minfeg, Shandong |
37º 37′ |
118º 33′ |
80 |
265. Dianzi, Shandong |
37º 25′ |
118º 14′ |
122 |
266. Taizi, Shandong |
37º 08’ |
117º 31’ |
204 |
267. Xiaolipu, Shandong |
36º 26’ |
116º 36’ |
338 |
268. Dong’ezhen, Shandong |
36º 10’ |
116º 13’ |
387 |
269. Yangji, Shandong-Henan |
35º 44’ |
115º 35’ |
485 |
270. Wuqiu, Shandong-Henan |
35º 18’ |
115º 00’ |
570 |
* Due to the enormous volumes of sediment in suspension, the installation of the FHEs could become difficult.
General Notes:
I. The great tubular structures that would lead the designed volumes to each of the production lines would comply with strict norms and specifications to provide the required volume with absolute certainty and security.
It is this way that from the first generating equipment to the last; the structures would ensure correct, productive, and efficient operations.
II. In the mightiest rivers (above 12,500 m3/s), the FFHCs would be formed by five parallel lines of extraction of energy, additionally, each line would have ten groups of turbo-generators similar to those of Kaplan-Bulb type or other similar high-technology equipment.
In mid-sized river as well as in those suggested to be natural models to analyze the FFHCs’ benefits, two or three lines of production would de installed. It means that the technical and economic feasibility would reside on considerably increasing the speed of water flow in the selected hydraulic sections. Without a doubt this requirement is feasible, based on the fact that the sea currents work like great underground rivers; imitating that action by creating artificial currents is possible based on special conception and structures.
This requires an original invention to create the artificial rivers. In this case, this invention is the FFHCs within important rivers and marine straits.
It is that way, that in the 235 proposed FFHCs, an approximated annual production of eleven million Giga-watts/hour would be reached; this is the equivalent to 67% of the present worldwide generation of electrical energy.
Valle de Mexico. November of 2004 www.energywatertm.com
MAIN BAYS AND MARINE STRAITS. HYDROKINETIC FRONTS
America
North America
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude West |
Kilometers |
|
1. Strait of Bering, Alaska, United States |
65º 42′ |
168º 30′ |
37 |
2. Strait of Juan de Fuca, Canada-United States |
48º 18′ |
124º 03′ |
22 |
3. Strait of Belle Island, Canada |
51º 24′ |
56º 44′ |
18 |
4. Bay of Fundy, Canada-United States |
44º 45′ |
66º 55′ |
13 |
5. Bay of Chesapeake, United States |
37º 00’ |
76º 00’ |
20 |
6. Gulf of California, Mexico |
31º 43’ |
114º 44’ |
13 |
7. Bay of Acapulco, Mexico |
16º 49’ |
99º 52’ |
3 |
Greenland
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude West |
Kilometers |
|
8. Ittonisseg |
70º 14′ |
22º 45′ |
38 |
South America
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude South |
Longitude East |
Kilometers |
|
9. Gulf of Ancud, Chile |
41º 47′ |
73º 32′ |
2.60 |
10. Strait of Magallanes 1, Chile |
52º 30′ |
69º 35′ |
3.30 |
11. Strait of Magallanes 2, Chile |
52º 44′ |
70º 27′ |
7.70 |
12. Strait of Magallanes 3, Chile |
53º 23′ |
72º 57′ |
4.60 |
Europe
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
13. Sognafiorden, Norway |
61º 04′ |
5º 30′ |
3.70 |
14. Nordfjord, Norway |
61º 55′ |
5º 23′ |
2.00 |
15. Strait of Dover, France-Great Britain |
51º 01′ |
1º 31′ |
35.00 |
16. Vlissingen, The Netherlands |
51º 25′ |
3º 32′ |
5.40 |
17. Den Helder, The Netherlands |
52º 58’ |
4º 43’ |
2.30 |
18. Strait of Fehmarn, Denmark-Germany |
54º 34’ |
11º 17’ |
19.00 |
19. Helsingborg, Denmark-Sweden |
56º 02’ |
12º 39’ |
3.50 |
20. Strait of Kalmarsund, Sweden |
56º 40’ |
16º 26’ |
5.50 |
21. Strait of Bonifacio, Corse-Sardegna |
41º 19’ |
9º 12’ |
12.50 |
22. Strait of Messina, Italia |
38º 15’ |
15º 39’ |
3.00 |
23. Gulf of Patrae-Corinth, Greece |
38º 02’ |
22º 06’ |
2.50 |
24. Chalsis-Eubea, Greece |
38º 28’ |
23º 35’ |
1.00 |
25. Strait of Dardanelles 1, Turkey |
40º 01’ |
26º 11’ |
4.50 |
26. Strait of Dardanelles 2, Turkey |
40º 20’ |
26º 37’ |
4.00 |
United Kingdom and Ireland
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude West |
Kilometers |
|
27. Sound of Mull, Scotland |
56º 37′ |
6º 01′ |
2.30 |
28. Channel of the North, Scotland-Northern Ireland |
54º 49′ |
5º 23′ |
37.00 |
29. Strait of Menai, Wales |
53º 08′ |
4º 18′ |
2.00 |
30. Channel of Bristol, England-Wales |
51º 19′ |
3º 32′ |
18.00 |
31. Shannon, Ireland |
52º 34’ |
9º 40’ |
3.80 |
Iberian Peninsula
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude West |
Kilometers |
|
32. Strait of Gibraltar, Spain |
36º 01′ |
5º 42′ |
24 |
Africa
Djibouti
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
33. Bad al Mandab 1, Red Sea-Gulf of Aden |
12º 35′ |
43º 19′ |
23 |
34. Bad al Mandab 2, Djibouti-Yemen |
12º 39′ |
43º 26′ |
29 |
Tanzania
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude South |
Longitude East |
Kilometers |
|
35. Channel of Zanzibar |
6º 11′ |
39º 01′ |
37 |
Morocco
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude West |
Kilometers |
|
36. Strait of Gibraltar |
35º 52′ |
5º 42′ |
24 |
Asia
Oman-Iran
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
37. Strait of Hormuz |
26º 00′ |
56º 50′ |
78 |
India-Sri Lanka
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
38. Strait of Palk (Gulf of Mannar) |
9º 05′ |
79º 30′ |
30 |
Malaysia-Indonesia
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
39. Strait of Malacca |
2º 06′ |
101º 58′ |
50 |
Indonesia
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
40. Strait of Selat Sunda |
5º 54′ |
105º 48′ |
27 |
Singapore
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
41. Strait of Singapore (Phillip Channel) |
1º 13′ |
103º 58′ |
17 |
Japan
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
42. Kitakyushu, Fukuoka-Yamaguchi |
33º 55’ |
130º 52’ |
2.50 |
43. Tomogashima-suido, Hyogo-Wakayama |
34º 16’ |
134º 59’ |
4.00 |
44. Tsugaru-Kaikyo, Aomori-Hokkaido |
41º 19’ |
140º 16’ |
19.50 |
Russia
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude North |
Longitude East |
Kilometers |
|
45. Strait La Perouse (Hokkaido- Sakhalin) |
45º 44’ |
142º 00’ |
42 |
46. Strait of Tatarskiy (Sakhalin Island) |
52º 12’ |
141º 35’ |
7 |
47. Bay of Penzhinskaya (Sea of Okhotsk) |
61º 36’ |
163º 55’ |
29 |
48. Strait of Bering |
65º 52’ |
169º 22’ |
37 |
Oceania
Australia
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude South |
Longitude East |
Kilometers |
|
49. Brisbane, Queensland |
27º 22′ |
153º 26′ |
2.50 |
50. Melbourne, Victoria |
38º 18′ |
144º 37′ |
3.50 |
51. Backstairs Passage, Adelaide |
35º 42′ |
138º 04′ |
14.00 |
New Zealand
Hydrokinetic Front |
Geographic Coordinates |
Width |
|
Latitude South |
Longitude East |
Kilometers |
|
52. Strait of Cook |
41º 14′ |
174º 30′ |
23 |
General Notes:
I. The proposed sites to install Marine Hydrokinetic Fronts (FHCm) of high electricity production would take as much advantage as possible of the submarine currents while taking into account the characteristics and technical advantages that the pre-selected bays and straits have to offer.
II. The powerful turbo-generating equipment type Kaplan-Bulb or other similar group, would be designed and manufactured with scientific processes of vanguard that would them allow to transform the unlimited kinetic energy from the sea water into enormous submarine currents of electricity.
It means that the technical and economic feasibility would reside on considerably increasing the speed of water flow in the selected hydraulic sections. This requires an original invention, in this case, the FHCs within important rivers and marine straits. Without a doubt this requirement is feasible, based on the fact that the sea currents work like great underground rivers; imitating that action by creating artificial currents is possible based on special conception and structures.
III. It is important to point out that in some of the sites where the FHCm would be located, aggressive meteorological phenomena, such as cyclones, tsunamis, tides, freezing takes place. Reason why, security and protection of the groups of turbo-generators are a high-priority, especially everything related to the laying solid foundations, the stability of the equipment and electromechanical facilities, and conduits of access, ventilation and exit for the conduction cables.
All of the above will avoid damages to the equipment as well as prevent water of entering the engine rooms. The transmission lines that will transport the electrical energy to the substations situated offshore would be inside of well-protected submarine pipes.
IV. The great tubular structures that would lead the water volumes of design to each of the production lines, besides of complying with strict norms and specifications to provide with total certainty the required volume (in the order of 1,000 ms/s to 1,700 m3/s, depending on the power to allocate), would guarantee the FHCm correct, productive and efficient operation. Of course, the materials, anchoring systems and the cross-sectional transition areas to maintain the speed of design and guarantee the installed power must fulfill all the project’s requirements and concepts.
Manuel Frias Alcaraz
Mexico City, December 2004
www.energywatertm.com
Mexico, D.F. December of 2004
Updated to July 2011
Related Posts
Acerca de este Artículo
Usted lee “Hydrokinetic Frias Fronts (FFHC),” un artículo en México Tercer Milenio
- Publicado:
- 08.18.11 / 6pm
- Categoría:
- Proyectos
Sin comentarios
Comentarios | comments rss[?] | liga directa [?]